

Musée de Sismologie et Magnétisme Terrestre

Vitesse des ondes P dans le manteau et épaisseur de la croûte terrestre

Notice à l'attention du professeur

Public visé par l'activité : Lycéens

<u>Disciplines concernées</u>: S.V.T., Sciences Physiques, Mathématiques

<u>Lieu pour l'activité :</u> En classe ou à la maison

Durée de l'activité : Environ 2 heures

Nature de l'activité : Exploiter des données extraites du site web du RéNaSS afin de

déterminer la vitesse des ondes P dans le manteau supérieur ainsi que l'ordre de grandeur de l'épaisseur de la couche terrestre en établissant l'expression du temps de parcours des ondes réfractées

sur le Moho.

<u>Contenu du dossier :</u> Fiche élève

Fichiers de dépouillement issus du site du RéNaSS Liste des stations courte période du RéNaSS

Proposition de correction sur demande émanant d'une adresse académique de préférence et adressée à l'un des contacts indiqués

ci-dessous.

Déroulement possible de l'activité :

Cette activité peut tenir lieu de travail dirigé, d'activité en classe entière ou de travail à faire à la maison. Elle peut suivre l'activité **Vitesse des ondes P et S dans la croûte terrestre**.

Contacts:

Pierre-André Labolle, Lycée des Pontonniers : <u>plabolle@ac-strasbourg.fr</u>

Valérie Ansel, EOST : <u>valerie.ansel@unistra.fr</u>

Vitesse des ondes P dans le manteau et épaisseur de la croûte terrestre

L'objectif de cette activité est de déterminer, à partir des informations fournies par les sismogrammes, la vitesse des ondes P dans le manteau supérieur en exploitant les données concernant les ondes P ayant subi une réfraction avec un angle d'incidence critique sur le Moho, surface de séparation entre la croûte terrestre et le manteau supérieur.

I/. Réfraction et réflexion des ondes sismiques

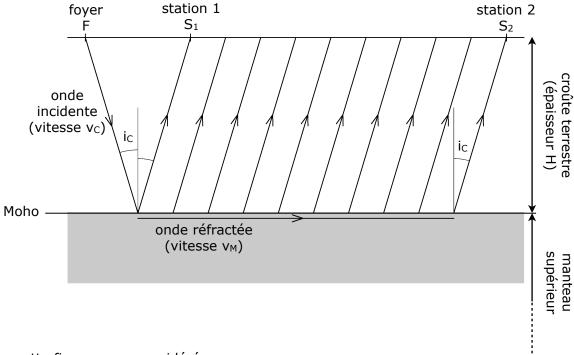
I.1. Loi de Descartes

Comme les ondes lumineuses, les ondes sismiques subissent un changement de direction de propagation lorsqu'elles rencontrent la surface de séparation entre deux milieux dont les propriétés mécaniques sont différentes. Ce changement de direction est appelé réfraction ; il est en tout point semblable au phénomène de réfraction de la lumière.

- **I.1.1.** Sur un schéma annoté, représenter le phénomène de réfraction en y plaçant : la surface de séparation entre les deux milieux matériels différents, les rayons incidents, réfléchis et réfractés, la droite appelée "normale au point d'incidence" ainsi que les angles d'incidence i₁, de réfraction i₂ et de réflexion r.
- **I.1.2.** Rappeler l'expression mathématique de la seconde loi de Descartes de la réfraction qui donne la relation entre les angles d'incidence i₁ et de réfraction i₂.
- **I.1.3.** On rappelle qu'en optique, l'indice de réfraction d'un milieu matériel est défini comme le rapport de la célérité de la lumière dans le vide c et de la célérité de la lumière dans ce milieu matériel v. Autrement dit, $n = \frac{c}{v}$. Montrer alors que la loi de

Descartes peut se mettre sous la forme : $\frac{\sin i_1}{v_1} = \frac{\sin i_2}{v_2}$ où v_1 est la célérité de

l'onde dans le milieu matériel incident et v_2 celle dans le milieu où se propage l'onde réfractée.


I.2. Ondes sismiques et réflexion totale

La relation trouvée précédemment dans le cas de la lumière est aussi valable pour les ondes sismiques. Dans notre cas, les ondes P se propageant dans la croûte terrestre vont, à une certaine profondeur, rencontrer la surface de séparation entre la croûte et le manteau supérieur (cette interface entre la croûte et le manteau est appelée Moho). Elles vont donc subir une réfraction, leur vitesse de propagation dans la croûte v_C étant différente de leur vitesse de propagation dans le manteau v_M .

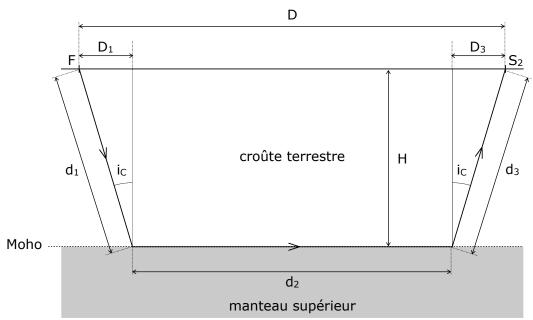
- **I.2.1.** À l'aide de la loi de Descartes exprimée dans la question **I.1.3.**, exprimer \sin_2 en fonction de v_C , v_M et i_1 .
- **I.2.2.** En utilisant le fait que le sinus d'un angle est toujours inférieur ou égal à 1, montrer qu'il existe un angle d'incidence particulier au-delà duquel il ne peut y avoir de rayon réfracté et donner l'expression de son sinus. Cet angle d'incidence est appelé "angle critique" et noté i_C.
- **I.2.3.** Dans le cas où $i_1 = i_C$, on dit qu'il y a réflexion totale et on démontre alors que l'onde réfractée se propage parallèlement à l'interface entre les deux milieux.

I.3. Propagation des ondes P_N

On appelle P_N les ondes P qui ont subi une réfraction sur le Moho (surface de séparation entre la croûte terrestre et le manteau supérieur) avec un angle d'incidence critique i_C . L'étude physique détaillée de ces ondes P_N réfractées qui se propagent parallèlement au Moho montre que tout se passe comme si, au moment où le rayon incident arrive sur le Moho avec une incidence i_C , il se mettait à suivre le Moho avec la vitesse v_M , tout en émettant, dans la croûte, sous l'incidence i_C , des rayons parallèles entre eux qui se propagent dans la croûte à la vitesse v_C (voir figure ci-dessous).

Sur cette figure, on a considéré que :

- la surface de la Terre était plate sur les distances concernées par la figure ;
- la croûte et le manteau sont des milieux homogènes, d'où la représentation rectiligne des rayons ;
- le séisme a eu lieu en surface ou à une profondeur négligeable devant les autres distances mises en jeu.


II/. Récupération des données sur le site web du RéNaSS

On se propose d	e travailler sur l'exemple du séisme datant du $_$ $_$ $/$	' / ressenti en		
	notamment et localisé près de	r l'exemple du séisme datant du / / ressenti er et localisé près de Toutes les données r le site web du RéNaSS (Réseau National de Surveillance		
utiles se trouvent	en ligne sur le site web du RéNaSS (Réseau	National de Surveillance		
Sismigue):				

- ▶ se connecter à l'adresse suivante : http://renass.u-strasbg.fr;
- dans Liens directs dans le menu de gauche, choisir Derniers séismes localisés et utiliser soit l'un des derniers séismes présentés, soit le moteur de recherche pour rechercher le séisme particulier mentionné ci-dessus;
- nous utilisons le moteur de recherche pour atteindre le fichier de dépouillement du séisme du __/__/ ___ (modifier les dates entre le __ et le __/__/ ___ et la magnitude entre __ et __); pour obtenir suffisamment de données, la magnitude doit être supérieure à 3,5;
- en cliquant sur l'icône du sismogramme, on visualise les sismogrammes enregistrés aux différentes stations et en cliquant sur le lien bleu à droite, on accède au fichier de dépouillement dans lequel on ne s'intéressera ici qu'aux ondes notées PN qui ont subi une réfraction sur le Moho;
- les trois colonnes représentent respectivement : les initiales de la station, le type d'onde pointé sur le sismogramme et la date d'arrivée de ces ondes à la station ;
- à l'aide des informations figurant dans l'entête du fichier de dépouillement, remplir la partie supérieure du tableau ci-joint;
- \blacktriangleright à l'aide des données fournies pour chaque station, compléter les 5 premières colonnes du tableau ci-joint où t_{PN} désigne la date d'arrivée des ondes P_N ;
- dans le menu de gauche, cliquer sur Réseaux sismiques puis Le réseau des courtes périodes et enfin liste des stations Courte-Période du RéNaSS;
- identifier chaque station relevée précédemment et noter ses coordonnées (latitude et longitude) ;
- se rendre sur le site http://www.lexilogos.com/calcul distances.htm et calculer les distances D, en kilomètres, séparant l'épicentre des différentes stations en rentrant les coordonnées (latitude et longitude) relevées dans le tableau (utiliser le point comme séparateur décimal).

III/. Expression du temps de parcours des ondes PN

On s'intéresse ici au cas de la station S₂ distante d'une distance D de l'épicentre du séisme qui est confondu avec le foyer puisque l'on considère que le séisme a eu lieu en surface. La figure ci-dessous représente la situation en définissant un certain nombre de distances utiles pour notre étude.

- **III.1.** Donner l'expression de la distance totale d parcourue par l'onde P_N en fonction des distances d_1 , d_2 et d_3 .
- **III.2.** Avec quelle vitesse de propagation l'onde P_N parcourt-elle la distance d_2 ? En déduire l'expression de la durée Δt_2 mise par l'onde P_N pour parcourir cette distance.
- **III.3.** À l'aide de la trigonométrie, exprimer la distance d_1 en fonction de l'épaisseur H de la croûte terrestre et de l'angle critique i_C . En déduire de même l'expression de d_3 .
- **III.4.** Avec quelle vitesse de propagation l'onde P_N parcourt-elle les distances d_1 et d_3 ? En déduire l'expression des durées Δt_1 et Δt_3 mises par l'onde P_N pour parcourir ces distances.
- **III.5.** À l'aide des questions précédentes, exprimer la durée Δt_{PN} mise par l'onde réfractée P_N pour parcourir la distance d.
- **III.6.** À l'aide de la trigonométrie, exprimer la distance D_1 en fonction de l'épaisseur H de la croûte terrestre et de l'angle critique i_C . En déduire de même l'expression de D_3 .
- **III.7.** Exprimer la distance d_2 en fonction des distances D, D_1 et D_3 et en déduire l'expression de d_2 en fonction de D, H et i_c .
- III.8. En remplaçant d_2 par l'expression précédente dans la relation trouvée en III.5., montrer que la durée Δt_{PN} s'exprime par : $\Delta t_{PN} = \frac{D}{v_{_M}} + \frac{2 \cdot H}{v_{_C} \cdot \cos i_{_C}} 2 \cdot H \cdot \frac{\tan i_{_C}}{v_{_M}}$.

- III.9. On rappelle que d'après I., $\sin i_C = \frac{v_C}{v_M}$. En utilisant la relation $\tan i_C = \frac{\sin i_C}{\cos i_C}$, démontrer que $\frac{\tan i_C}{v_M} = \frac{\sin^2 i_C}{v_C \cdot \cos i_C}$ et par suite que $\Delta t_{PN} = \frac{D}{v_M} + \frac{2 \cdot H}{v_C \cdot \cos i_C} \cdot \left(1 \sin^2 i_C\right)$.
- $\begin{aligned} \textbf{III.10.} \text{ En remarquant que } \cos^2 i_C + \sin^2 i_C &= 1 \text{ , montrer que } \Delta t_{PN} = \frac{D}{v_{_M}} + \frac{2 \cdot H}{v_{_C}} \cdot \cos i_C \text{ , que } \\ \cos i_C &= \sqrt{1 \left(\frac{v_{_C}}{v_{_M}}\right)^2} \text{ et donc finalement que } \Delta t_{_{PN}} = \frac{D}{v_{_M}} + \frac{2 \cdot H}{v_{_C}} \cdot \sqrt{1 \left(\frac{v_{_C}}{v_{_M}}\right)^2} \text{ .} \end{aligned}$

IV/. Calcul de la vitesse des ondes P dans le manteau et de l'épaisseur de la croûte

Dans l'expression de Δt_{PN} établie précédemment, et moyennant les hypothèses de travail que l'on s'est fixé, on peut remarquer que la durée Δt_{PN} mise par les ondes P_N pour arriver à la station S_2 ne dépend que de la distance D séparant la station de l'épicentre. On voit que cette durée Δt_{PN} est une fonction affine de D :

$$\Delta t_{PN} = a \cdot D + b$$
 où $a = \frac{1}{v_{M}}$ et $b = \frac{2 \cdot H}{v_{C}} \cdot \sqrt{1 - \left(\frac{v_{C}}{v_{M}}\right)^{2}}$

- **IV.1.** Proposer une méthode graphique permettant de déterminer la vitesse v_M de l'onde P_N dans le manteau à partir des données collectées dans le tableau.
- **IV.2.** Proposer de même une méthode graphique permettant de déterminer l'épaisseur H de la croûte terrestre.
- **IV.3.** En utilisant un tableur-grapheur (du type Régressi ou Latis Pro), mettre en œuvre la méthode graphique proposée et en déduire les valeurs du coefficient directeur a et de l'ordonnée à l'origine b de la droite tracée.
- **IV.4.** Exprimer la vitesse des ondes P dans le manteau en fonction de a puis calculer sa valeur.
- **IV.5.** Exprimer l'épaisseur de la croûte H en fonction de b, v_C et v_M puis calculer sa valeur en considérant que la vitesse de propagation des ondes P dans la croûte terrestre est $v_C = 5,5 \text{ km} \cdot \text{s}^{-1}$.

V/. Conditions de détection des ondes PN

V.1. Distance minimale entre l'épicentre et la station

Étant donné le mode de propagation des ondes P_N , aucune station plus proche de l'épicentre que la station S_1 indiquée sur la première figure ne peut détecter ces ondes.

- **V.1.1.** En utilisant la trigonométrie, exprimer la distance FS₁ en fonction de l'épaisseur H de la croûte et de l'angle critique i_c.
- **V.1.2.** À l'aide de la valeur trouvée pour v_M et en considérant que la vitesse de propagation des ondes P dans la croûte terrestre est $v_c = 5,5 \text{ km} \cdot \text{s}^{-1}$, calculer la valeur de la distance minimale FS₁ à partir de laquelle les ondes P_N peuvent être détectées.
- **V.1.3.** Comparer la valeur obtenue aux distances séparant l'épicentre des différentes stations utilisées pour déterminer v_M et conclure.

V.2. Détection optimale des ondes PN

L'amplitude des ondes P_N est relativement faible. Il n'est pas aisé de les détecter si celles-ci arrivent à la station après les ondes P_g directes qui, elles, n'ont pas subi de réfraction mais se sont propagées directement du foyer du séisme à la station en restant dans la croûte terrestre. En effet, les ondes P_N se trouveraient alors mélangées à des signaux dont les amplitudes sont bien plus élevées.

La détection des ondes P_N ne se fait facilement qui si celles-ci arrivent à la station <u>avant</u> les ondes P_G directes. Ceci est possible puisque les ondes P_N sont plus rapides dans le manteau que les ondes P_G directes qui, elles, se propagent uniquement dans la croûte.

- **V.2.1.** Exprimer la durée Δt_{Pg} nécessaire aux ondes P_g directes pour parcourir la distance D séparant la station de l'épicentre en fonction de D et de v_C .
- **V.2.2.** Traduire par une inégalité mathématique entre Δt_{PN} et Δt_{Pg} le fait que les ondes P_N ayant subi une réfraction arrivent à la station avant les ondes P_G directes.
- **V.2.3.** En utilisant l'expression $\Delta t_{PN} = a \cdot D + b$ ainsi que celle de Δt_{Pg} trouvée ci-dessus, en déduire une inégalité pour la distance D séparant la station de l'épicentre.
- **V.2.4.** Déduire de la question précédente l'expression de la distance minimale D_{min} à partir de laquelle il est plus facile de détecter les ondes P_N en fonction de b, v_C et v_M .
- **V.2.5.** Comparer la valeur obtenue aux distances séparant l'épicentre des différentes stations utilisées pour déterminer v_M et conclure.

Latitude de l'épicentre :	Longitude de l'épicentre :	de (°) Distance D à l'épicentre (km)								
Latitude	Longitud	Longitude (°)								
Heure du séisme to :		Latitude (°)								
Date du séisme :	Magnitude :	$\Delta t_{PN} = t_{PN} - t_0$ (S)								
séisme :		t _{PN} (h, min, s)								
Localisation du séisme		STATION								